
History of the OpenBSD
Hardware Sensors Framework

Constantine A. Murenin
University of Waterloo

AsiaBSDCon 2009 — 12/15 March 2009 — Tokyo, Japan

Outline

• Introduction

• Framework API and utilities

• Drivers

• I²C Bus Scan

• Conclusion

What is a sensor?

• Any device with a sensor-like data:

• temperature

• voltage

• fan speed

• …

• logical drive status

• time offset

Are these common at all?

• many Super I/O chips have integrated
hardware monitors

• Intel Core and AMD K8 / K10 have integrated
thermal sensors

• IPMI in servers / ACPI in laptops

• SCSI enclosures

• 10GbE and 802.11

Why sensors framework?

• Monitoring environmental values can predict,
detect, troubleshoot system failure.
(Voltage, temperature, fan, logical drive status.)

• Unified interface, no configuration required,
works out-of-the-box.

• Sensors are fun!

Uber cool drivers

• sdtemp(4) — SO-DIMM temperature sensors

• km(4) — AMD Family 10h processors
(Phenom, Opteron Barcelona) and Family 11h
(Turion X2 Ultra et al)

neither of these two are in Linux yet!

http://theos.com/deraadt/jc-42.4-pic1.jpg

http://theos.com/deraadt/jc-42.4-pic2.jpg

Design decisions

• Keep it simple, secure and usable

• Make it work by default

• Overengineering is useless — many devices
have incomplete specifications

• No buttons™

How voltage sensors work?

• Most chips have sensors from 0 to 4 V

• Excess voltage removed by resistors

• Resistor “recommendations”

How voltage sensors read?

function maths result
original readin’ 0xcb 203

sensor voltage 203 * 16 mV 3.24 V

scale for +5 V 3.24 V * 1.68 5.44 V

scale for +12 V 3.24 V * 3.80 12.31 V

Resistor recommendations

• Ignored by some motherboard designers

• Not given in documentation for some chips

• Results:

• voltage “doesn’t scale”

• do the best with what you have

Framework API

/sys/sys/sensors.h

• struct sensor / struct sensordev,
transport over sysctl(3)

• sensor description, e.g. “CPU” (optional)

• sensor type / unit: ‘temp’, ‘fan’, ‘volt’,
‘indicator’, ‘drive’, ‘timedelta’ etc

• sensor state: unspec, ok, warn, crit, unknown

void
drv_attach(struct device *parent, struct device *self, void *aux)
{
 ...

 strlcpy(sc->sc_sensordev.xname, sc->sc_dev.dv_xname,
 sizeof(sc->sc_sensordev.xname));

 for (i = 0; i < n; i++) {
 sc->sc_sensors[i].type = SENSOR_TEMP;
 sensor_attach(&sc->sc_sensordev, &sc->sc_sensors[i]);
 }

 if (sensor_task_register(sc, drv_refresh, 5) == NULL) {
 printf(": unable to register the update task\n");
 return;
 }

 sensordev_install(&sc->sc_sensordev);

 printf("\n");
}

Adding sensors in attach()

void
drv_refresh(void *arg)
{
 struct drv_softc *sc = arg;
 struct ksensor *s = sc->sc_sensors;
 ...

 for (i = 0; i < n; i++)
 s[i].value = ...;
}

Sensor task refresh procedure

Sensor tools in OpenBSD

• sysctl(3) HW_SENSORS / sysctl(8) hw.sensors

• systat(1) — semi-realtime sensor monitoring

• sensorsd(8) — sensor monitor

• ntpd(8) — timedelta minimiser

• snmpd(8) — SNMP daemon

• ports/sysutils/symon — remote monitoring

• ports/sysutils/gkrellm — GUI monitoring

hw.sensors.km0.temp0=50.50 degC
hw.sensors.it0.temp0=32.00 degC
hw.sensors.it0.temp1=45.00 degC
hw.sensors.it0.temp2=92.00 degC
hw.sensors.it0.fan0=2528 RPM
hw.sensors.it0.volt0=1.34 VDC (VCORE_A)
hw.sensors.it0.volt1=1.92 VDC (VCORE_B)
hw.sensors.it0.volt2=3.42 VDC (+3.3V)
hw.sensors.it0.volt3=5.21 VDC (+5V)
hw.sensors.it0.volt4=12.54 VDC (+12V)
hw.sensors.it0.volt5=1.62 VDC (-5V)
hw.sensors.it0.volt6=4.01 VDC (-12V)
hw.sensors.it0.volt7=5.75 VDC (+5VSB)
hw.sensors.it0.volt8=3.23 VDC (VBAT)

% sysctl hw.sensors

sensorsd

• fills in your logs

• no manual configuration required for ‘smart’
sensors (those that keep state)

• most other sensors require very minimal
configuration (“temp:low=15C:high=65C”)

Drivers
• Super I/O hardware monitors (lm, it, viaenv, viasio,

nsclpcsio, fins, schsio etc)

• SMBus hardware monitors (too many to mention)

• Embedded temperature sensors (Ethernet, CPU etc)

• SCSI enclosures and IPMI (safte, ses, ipmi, esm)

• Various ACPI sensors (temperature, voltage, power)

• RAID logical drive status sensors (esm, ami, ciss, mfi,
arc, softraid, cac, mpi)

• time offset sensors (“timedelta” sensors)

Drivers by category

misc
17 acpi

4

drive
8

timedelta
7

Super I/O
7

i²c
29

Drivers by type
temp
fan
volt

acvolt
resistance

power
current

watthour
amphour
indicator

raw
percent

illuminance
drive

timedelta 7
8

1
6

8
8

1
1
2

25
25

49

Drivers by release

3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5

72
68

61

51
46

42

33

9
5543

I²C

• Many chips lack meaningful signatures

• Open Firmware provides a list of devices
(string, i²c-address pairs)

• Drivers match by string, e.g. “adt7467” or
“ds1775”

I²C Bus Scan

/sys/dev/i2c/i2c_scan.c

• when there’s no Open Firmware (e.g. i386/amd64/etc)

• goes through a list of i²c-addresses where sensors live

• for each address, the value of each register is cached
on the first read, unless it is ignored entirely via
blacklisting

• the result of successful scan iteration is a string
describing the chip (e.g. “w83793g”)

I²C Bus Scan (cont.)

• All signatures are located in i2c_scan.c,
ensuring that there are no conflicts

• OpenBSD-way: all of this is enabled by default

• Result: code is tested on all machines that have
i²c and don’t have Open Firmware

• All supported i²c drivers are enabled in
GENERICs and “just work”

I²C Sandbox

• i2c_scan.c prints a register dump for
unidentified sensors into dmesg

• we kindly ask all users to voluntarily send
dmesg’s to dmesg@openbsd.org archive

• a sandbox driver wrapper can be easily written
to parse the dumps, and test drivers

• streamlines i²c driver development and initial
testing

mailto:dmesg@openbsd.org
mailto:dmesg@openbsd.org

NetBSD envsys / sysmon

• 32 drivers in NetBSD (vs. 72 in OpenBSD)

• more complicated API

• non-standard tools

• ‘drive’ sensors ported from OpenBSD

• 2007-11 envsys2 API introduced suspicious
resemblance of OpenBSD’s sensor_attach API

Framework Timeline,
Simplified

1999/2000: envsys / sysmon introduced into NetBSD, with lm(4)
and viaenv(4)

2003-04-25: lm(4) and viaenv(4) are committed into OpenBSD by
grange@ (Alexander Yurchenko), but with a much simpler sysctl-
based interfacing, first appeared in OpenBSD 3.4

2004/2005: evolution by grange, dlg, kettenis and deraadt

2006-12-23: deraadt commits my patches, converting 44 device
drivers and userland applications from one-level addressing to
two-level addressing (e.g. hw.sensors.11 to hw.sensors.lm0.temp2)

2007-09-13: final GSoC2007/cnst-sensors patch released for
FreeBSD 7.0-CURRENT

Conclusion

• 72 drivers in OpenBSD 4.5

• Framework is popular and in high demand

• Driver code is shared between NetBSD,
OpenBSD, DragonFly BSD and FreeBSD

• Userland interface is compatible between
OpenBSD and DragonFly BSD, and patched
FreeBSD

Future Projects

• Write even more sensor drivers for OpenBSD
(76 drivers by OpenBSD 4.6?)

• Port sensors-detect.pl from lm_sensors

• Port i2c_scan.c to FreeBSD / DragonFly APIs

• Further improve sensorsd

• Fan-speed controlling

Questions?
Comments?

Constantine A. Murenin
<cnst@openbsd.org>

mailto:cnst@openbsd.org
mailto:cnst@openbsd.org

