Martin Pieuchot
mpi@openbsd.org

EuroBSDcon, Sofia

September 2014




Taming OpenBSD Network Stack Dragons

sys/net/radix_mpath.c

/-.‘:

* Stolen from radix.c rn_addroute().

* This is nasty code with a certain amount of magic and dragons.
[...]

-,‘:/

2 of 25



Agenda

Motivation

Representing Addresses & Routes
Stack Metamorphosis

Where are we now?

Conclusion

3 of 25



Agenda

Motivation

4 of 25



Motivation

1. Give a talk at EuroBSDCon
2. Enjoy code from the 80's
3. Make it easier to run it in parallel

O Execute (some parts of) the forwarding path on > 1 CPUs
0 Cleaning from the “top”: ioctl and ipforward paths

4. Adapt it to a Plug & Play world

. Development process: commit early, revert, fix, commit

5 of 25



Agenda

Representing Addresses & Routes

6 of 25



What do we use addresses for?

Identify peers

o] v | oo

= Who is the receiver? I e
= Who is the sender?

Source Address

Destination Address

® Where is the destination? IPv4 header

Direct packets

7 of 25




Journey of a packet

ldentify

@ Y .e_s>5 Deliver

Direct

yes
- Send > Select interface

8 of 25




Representation of an address

Interface address (ifa)

struct ifaddr {

struct sockaddr *ifa_addr; /* address of interface */

struct sockaddr *ifa_dstaddr; /* other end of p-to-p link */
#define ifa_broadaddr ifa_dstaddr /* broadcast address interface */

struct sockaddr *ifa_netmask; /* used to determine subnet */

struct ifnet *ifa_ifp; /* back-pointer to interface */

TAILQ_ENTRY(ifaddr) ifa_list; /* list of addresses for interface */
[...]

9 of 25



Global data structures

Interface without address

10 of 25

Int. List




Global data structures

Interface with an address

Routing Table Int. List

RB-tree

Addr. List

11 of 25




When are they accessed?

ip_input

@ ¥ .e_s’g Deliver | ¥ RB-tree

--------- B Addr. List
B |nt. List

ip_forward

B Routing table*

ip_output

yes
....... B Routing table*

- Send > Select interface B Addr. List

B Int. List

12 of 25




Agenda

Stack Metamorphosis

13 of 25
=



Global lists

1. Get rid of link-layer address lookups

2. Use local (per ifp) lists instead of global ones
3. Or simply rewrite the code without the lookup
4

. Otherwise (in the process context) use the Interface List

Some modified functions

carp_set_addr(), ether_output(), ifa_ifwithnet(), ifa_ifwithroute(), IFP_TO_IA(),
in_localaddr(), in_pcbbind(), in_selectsrc(), ipv4_input(), ip-output(), m_cldrop(),
rip-usrreq(), rt_getifa()...

14 of 25
=



Interface list

ifa_ifwithaddr(), ifa_ifwithdstaddr() and ifa_ifwithnet()

1981: One address per interface (struct ifnet)

1985: Per interface list of addresses (struct ifaddr)
2010: Global RB-Tree of addresses

1985: Global list of addresses per protocol (i.e. struct in_ifaddr)
1999: KAME uses the routing table to forward or deliver

15 of 25
=



T
Routing table

m Use the routing table for address lookups
0 Consolidate KAME's “loobpack” hack

RTF_LOCAL For each configured address
RTF_BROADCAST For every IPv4 subnet

= Only one global structure

O Easier than maintaining coherency between various structures
0 Needs some love to be accessed in parallel

® Not slower/faster than the actual RB-tree

16 of 25



Protocol multicast addresses

Addr. List

Addr. List

" allhosts Y

N

mcast
l [ mcast
[ mcast l
/ { mcast
\ sal‘l fl(zS‘tS’ R OpenBSD 5.5
OpenBSD 5.4

17 of 25




Related changes

The link-layer address has been remove from all the lists

O No need to move this information to the routing table
O Many many dragons in this code

SO_DONTROUTE is no longer supported
o No option to bypass the routing table

Interface indexes are now unique
O Avoid dangling pointers

inet_ntop() replaces inet_ntoa() in the kernel

18 of 25



Agenda

Where are we now?

19 of 25
=



Global data structures

Interface with an address

Routing Table

Int. List @

<>

20 of 25




When are they accessed?

ip_input
@ yes’ Deliver u Routing table*
no
ip_forward
ip_output
es p P

B Routing table*

- Send > Select interface

21 of 25




Well, we're almost there

m Diff to kill the RB-tree is on tech@
m RTF_LOCAL routes still points to lo0

m Still doing 2 lookups in the forwarding case

Hopefully integrated for OpenBSD 5.7

22 of 25
=



Agenda

Conclusion

23 of 25
=



Conclusion

m Refactoring 30 years old code is hard
0 But we have a pretty good history
® Very few people care because

O It’s not a “feature”
0 There's no visible speed gain
O Changes always find some dragons

® Understanding what you're changing is important
O Future developers won't hate you (or not that much)

® Still plenty of dragons

24 of 25
=



Questions?

Slides on http://www.openbsd.org/papers/

25 of 25
=



	Motivation
	Representing Addresses & Routes
	Stack Metamorphosis
	Where are we now?
	Conclusion

